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Reversal models from dynamo calculations

By G raeme R. Sarsony
School of Mathematical Sciences, University of Exeter, Exeter EX4 4QE, UK

A numerical model of convection driven dynamo action, exhibiting a dominantly
dipole magnetic  eld subject to intermittent reversals, is described. This model was
originally restricted to two azimuthal modes, but has now been extended towards full
three-dimensional resolution. The hydrodynamic state of this model is explained by a
thermal wind mechanism, which generates strong zonal ®ows and secondary merid-
ional circulation from a characteristic temperature pro le consistent with highly
supercritical convection. The zonal ®ows generate strong zonal magnetic  elds via
an !-e¬ect, and the equilibration of the dynamo relies heavily on a reduction in
this e¬ect, as might be parametrized as an `!-quenching’. The time-behaviour of the
model is complex, but the importance of meridional circulation in this respect is
clear; ®uctuations in this component of ®ow provide a simple kinematic mechanism
for reversals. Some parallels between model solutions and geomagnetic observations
are noted, although detailed comparisons remain premature. Although the model
remains far from the appropriate physical regime, the thermal wind and kinematic
reversal mechanisms described are quite general, and may continue to play a role in
the geodynamo.

Keywords: geodynamo; reversals; computational models

1. Introduction

With the general acceptance of the magnetohydrodynamic (MHD) dynamo model
for the maintenance of the geomagnetic  eld, the phenomenon of  eld reversals (and
long term secular variation) presents no conceptual di¯ culties. There is no obvious
reason why the ®uid system in the Earth’s core|presumably chaotically ®uctuating,
like other geophysical ®uid systems|should prefer magnetic  elds of a given parity,
or prohibit events involving parity reversals. Indeed, the existence of reversals, and
secular variation in general, was historically one of the strongest factors in favour of
the dynamo explanation for the geomagnetic  eld.

While the theoretical possibility of reversals is quite clear, we would like to under-
stand the phenomenon in a more quantitative way. Just as we would like to know
which features of the ®uid ®ow in the Earth’s core can sustain a large-scale magnetic
 eld, we would like also to know which features of the system contribute to the time-
behaviour observed: what features of the MHD regime of the geodynamo are prone
to, `trigger’, or are in®uenced by  eld reversals?

With the advent of widely available computing power, detailed numerical mod-
elling of MHD dynamo processes is becoming feasible (although there remain many
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922 G. R. Sarson

unsatisfactory features in all numerical models to date). Any numerical model for
the geodynamo must be amenable to testing against the available (or feasible future)
observations. Given the long time-scales over which the dynamo processes operate,
and the comparative brevity of the historical geomagnetic record, the palaeomag-
netic record|theoretically spanning billions of years, and giving both reversal and
long term palaeosecular variation information|presents arguably the best hope for
testing numerical models. This is particularly true given the possibility that the his-
torical  eld is in an unrepresentative state; the present day  eld intensity may be
twice that of the long term palaeomagnetic average (Juarez et al . 1998; Tauxe, this
issue), a fact which might have major consequences for geodynamo models.

It should theoretically be possible to compare synthetic records (from numeri-
cal simulations) with the palaeomagnetic record, to test the validity of our models.
Formidable di¯ culties with such a scheme exist, however. The current numerical
models|even with their physical simpli cations, and their remoteness from the geo-
physically relevant parameter regimes|cannot practically produce synthetic time-
series longer than of order one million years. It is not clear that this is su¯ cient
to allow any meaningful statistical description that might be compared with the
palaeodata.

Furthermore, there are still many uncertainties associated with the palaeomagnetic
record. The prevailing view, whereby reversals and excursions are thought to be more-
or-less exceptional events, in a  eld characterized by long periods of stable polarity
(Jacobs 1994), has been challenged by some recent studies (Langereis et al . 1997;
Lund et al . 1998; Gubbins 1999), which present an alternative model characterized
by frequent events, at least within the last million years. If this latter view proves
tenable, and can be extended throughout the palaeomagnetic record, the implications
for dynamo models may be great.

Numerical models can at least be run for long enough to produce isolated synthetic
reversals, and the detailed physics behind those events can be studied. In terms of
such isolated events, however, the palaeomagnetic record is rather restricted, with the
limited accuracy of dating, compared with the relative rapidity of such transitions,
resulting in only uncorrelated and highly site-dependent records being available for
any given event. Current comparisons between numerical models and observations
must therefore remain rather limited.

The aims of the current paper are perhaps more limited still. We focus on the
behaviour of one simple numerical model, making no real claims for geophysical
verisimilitude. Our numerical system and typical solutions are described (in xx 2, 3),
and the dynamo action is discussed, in terms both of the `normal’ sustenance of  eld,
and of the reversal behaviour obtained (x 4). Some geomagnetic (or palaeomagnetic)
diagnostics are then calculated (in x 5), although we stress the prematurity of any
detailed comparisons. The relevance of our model to the Earth is  nally discussed
(x 6), in light of the limitations of our study; those features which are expected to be
robust are emphasized.

2. The numerical system

We consider the simplest self-consistent system capable of dynamo action and am-
enable to numerical study, in the appropriate geometry for the geodynamo: a shell
of self-gravitating, electrically conducting, Boussinesq ®uid, rotating about the polar
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Reversal models 923

(z) axis in spherical (r; ; ) geometry. The appropriate non-dimensional equations
are then

ez U Er2U = grad P + qRa r + (r B ) B ; (2.1)

@B

@t
= r (U B ) + r2B ; (2.2)

@

@t
= U grad + qr2 ; (2.3)

r U = r B = 0; (2.4)

in terms of the Ekman, Roberts and modi ed Rayleigh numbers

E =
2 L 2

; q = ; Ra =
g L 2

2
; (2.5)

given by the kinematic viscosity , rotation rate , characteristic length-scale L ,
thermal di¬usivity , magnetic di¬usivity , gravitational acceleration g, coe¯ cient
of thermal expansion , and mean radial temperature gradient . ez is the unit
vector in the z-direction.

We have dropped the inertial terms in the momentum equation, consistent with
the expected magnetostrophic force balance, i.e. we have taken zero Rossby number:
Ro = =(2 L 2) = 0. Despite the equally small viscosity expected for the core, we
retain a  nite Ekman number, however; the numerical di¯ culties associated with
setting E to zero are well documented (Fearn 1994).

We use an inner core whose radius is one-third that of the outer core, so that
our non-dimensional ®uid shell is given by 1=2 < r < 3=2. We use no-slip boundary
conditions on U, with the inner core free to rotate under viscous and magnetic
torques. B is matched to an external potential  eld, and solved explicitly within the
inner core. A  xed heat ®ux is imposed at the inner core boundary, this being the
only heat-source present:  xed temperature is imposed at the outer boundary.

This basic model is described in more detail in Jones et al . (1995) and Sarson et
al . (1998). The present work di¬ers from the preceding in relaxing somewhat the
severely limited azimuthal resolution previously used. To allow a tractable system at
relatively low computational cost, the `2 1

2
-dimensional’ approximation was originally

used, whereby only the axisymmetric  eld and a single mode of the non-axisymmetric
 eld were considered. (Each mode being a single wavenumber m in a harmonic expan-
sion in azimuth of the form eim .) We now consider M non-axisymmetric modes in
general, retaining the base wavenumber m = 2 used in most previous calculations.
In this paper, we report on calculations with M = 2 (i.e. wavenumbers m = 0; 2; 4)
and M = 4 (m = 0; 2; 4; 6; 8). While clearly remaining of limited azimuthal resolu-
tion, these solutions allow some consideration of the e¬ect of the original (M = 1)
truncation on our solutions. The e¬ect of odd subharmonics (m = 1; 3; 5; : : : ) will be
examined in future.

All variables are expanded in associated Legendre functions, Pm
l (cos ), and in

Chebyshev polynomials, Tn[x(r)]. In the calculations detailed here, a minimum of
32 Chebyshev polynomials and 48 Legendre functions have been employed for each
azimuthal mode. (Consistent solutions have been obtained with higher resolution
in r and .) The current calculations impose no special equatorial symmetry. A
pseudo-spectral method is adopted, and adaptive time-stepping is employed within
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924 G. R. Sarson

an O( t2)-accurate scheme: this is semi-implicit (Crank{Nicholson) for linear terms,
explicit for nonlinear terms.

Hyperdi¬usivities are employed in all three equations, following Glatzmaier &
Roberts (1995b):

r2 (1 + l3)r2; (2.6)

where l is the degree of the relevant Legendre function Pm
l (cos ). Although the use

of hyperdi¬usivities is problematical (Zhang & Jones 1997; Zhang et al . 1998), they
currently remain essential in allowing lower di¬usive parameters (E and q) to be
attained, at least for the longest length-scales. For a given E and q, they also allow
higher Ra, and hence more strongly supercritical solutions, to be attained.

3. Dynamo solutions

The types of solutions obtained in di¬erent parameter regimes were discussed by
Sarson et al . (1998) and are shown schematically in  gure 1. At relatively high E
and q, convection is dominated by non-axisymmetric columnar rolls: `Busse{Zhang’
type behaviour. For high E, such convection can be obtained at relatively low Ra (the
critical Rayleigh number for non-magnetic convection, Rac, goes as E 1=2 at small
E), and the solutions are well-behaved, both temporally and spatially. At values
of q of order 1 or greater, these relatively low values of Ra are su¯ cient to give
reasonable values of the magnetic Reynolds number, Rm = U L = , and so dynamo
action is possible. Solutions broadly conforming to this type have been found in
three-dimensional calculations by many groups; for a recent survey, see Jones (this
issue). At lower values of E and q, (currently attained only using hyperdi¬usivities,
and so strictly applying only to the largest scale features), higher values of Ra are
required, to give convection at all, and to give Rm su¯ cient to sustain a dynamo.
Solutions in this regime are rather di¬erent, being dominated by axisymmetric ®ow
and  eld, concentrated near the inner core: `Glatzmaier{Roberts’ type behaviour.
Solutions of this basic type have been reported in detail in a series of papers by
Glatzmaier & Roberts (1995a; b, 1996a; b, 1997) and Glatzmaier et al . (1999).

Locations of typical `end-members’ of these two types of solution are marked on
 gure 1, although the boundary between their two domains is somewhat imprecise. It
should be noted, for example, that GR type behaviour can be obtained at relatively
high E and q, if the system is driven su¯ ciently hard (Ra Rac); the solutions
described in this paper are at E = 10 4, q = 1, although similar solutions have been
obtained (at greater computational expense) at lower values of both parameters.

The extension to several azimuthal modes (1 < M 4) does not appear to a¬ect
the essential nature of the dynamo solutions in either regime. For many BZ solutions,
a signi cant component of energy is often found at the highest wavenumber included,
and so the solutions are clearly not yet resolved in azimuth; nevertheless, the axisym-
metric  elds generated often appear similar (this being the whole motivation for the
M = 1 approximation in the  rst place). (It should also be noted that some cases
have been found where the energy spectra gives hope for numerical convergence;
Jones (this issue) reports one such case.) For the GR solutions, the situation is more
satisfactory, with the energy in each mode typically decreasing monotonically with
wavenumber m, and the axisymmetric structure remaining very consistent. For this
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Figure 1. Schematic of the di® erent regimes of parameter space. Dynamo action is only possible
with high Rm convection. BZ and GR locate typical solutions of B̀usse{Zhang’ and G̀latz-
maier{Roberts’ type.

reason, and since these solutions exhibit reversal behaviour more appropriate for the
geodynamo than the BZ solutions, we concentrate here on solutions of GR type.

The GR solutions maintain a  eld of  xed polarity for most of the time, with only
occasional reversals being obtained. This can be seen from a time-sequence of the
leading order coe¯ cients of the dipole symmetry axisymmetric  eld ( gure 2), for
a solution obtained with Ra = 45 000, q = 1, E = 10 4, = 0:05, M = 4. This
behaviour is essentially unchanged from the M = 1 (2 1

2
-dimensional) case described

by Sarson & Jones (1999); this particular solution is at rather high Ra, and hence
rather susceptible to reversals. The relative insensitivity of these solutions to M is
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Figure 2. Time evolution of the leading coe± cients of axisymmetric poloidal (A) and toroidal
(B) ¯eld in the inner (i) and outer (o) cores, for a solution with Ra = 45 000, q = 1, E = 10 4 ,

= 0:05, M = 4.

indicated in plots of the magnetic energy by wavenumber m, from runs with varying
M ;  gure 3 shows the evolution of this quantity during representative time-intervals.
For all three M considered, the axisymmetric  eld dominates, and the energy spectra
essentially decrease monotonically with m. These facts, together with the observation
that the solution morphology does not appear to di¬er fundamentally for di¬erent
M , give us grounds for optimism as to the numerical validity of our solutions. Plots
of kinetic energy provide a similar result, although the decay with wavenumber m
is slightly less pronounced in that case. (To facilitate comparison with the Earth,
we have here scaled our non-dimensional calculations to dimensional units, using
typically quoted estimates for certain of the core physical parameters. In particular,
we have scaled time by the magnetic di¬usion time-scale, T = L 2= 60 000 yr,
and magnetic  eld strength by the magnetic scale, B = (2 )1=2 2:2 mT. In
most of this following, however, we will revert to non-dimensional units. Appropriate
dimensional units can be obtained, if desired, by scaling non-dimensional magnetic
 elds as above, and non-dimensional velocities by the velocity scale U = L =T
0:037 km yr 1 = 1:2 10 6 m s 1.)

A snapshot of the velocity of this solution can be seen in  gure 4, which shows
the vertical velocity (contours) and horizontal velocity (arrows) in the plane z = 0:3,
parallel with the Equator, in the Northern Hemisphere. (Throughout this paper, we
de ne vertical and horizontal to be parallel and perpendicular to ez , respectively;
radial and tangential are de ned to be parallel and perpendicular to er .) The dom-
inance of the zonal ®ow within the inner core tangent cylinder is apparent in the
strong horizontal ®ows, just outside the inner core in this slice (at cylindrical radius
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Figure 3. Time evolution of magnetic energy, subdivided by azimuthal wavenumber m, for
solutions with Ra = 45 000, q = 1, E = 10 4 , = 0:05, with M = 1, 2 and 4 ((a), (b) and (c),
respectively).

= 0 4). Although smaller than the zonal ®ow, the non-axisymmetric convection out-
side the tangent cylinder remains strong, convecting heat outwards e¯ ciently (the
zonal ®ow transports no heat, and the axisymmetric poloidal ®ow is rather small in
this region). This component of convection is strongest in the vicinity of the inner
core, as is typical (and might be expected) for convection driven by an imposed heat
®ux there (cf. uniform internal heating). The non-axisymmetric convection remains
rather columnar; in contrast to the BZ type columns, however, these structures are
not long-lived, but ®uctuate rather chaotically (and may drift in either direction).

The axisymmetric state of this solution, at the same instant, is shown in  gure 5.
The structure of the zonal ®ow can now be seen in the angular velocity ( sin ).
The axisymmetric poloidal ®ow can be seen from the quantity sin , which is a
streamfunction for the meridional circulation; ®ow is clockwise around positive con-
tours, and the dominant ®ow here constitutes a single large-scale cell, ®ow being
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0
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752.0- 752.0

2563.9

Figure 4. Velocity in slice z = 0:3 for a solution with Ra = 45 000, q = 1, E = 10 4 , = 0:05,
M = 4. The colour shows the vertical component of ° ow, arrows show the horizontal.

vertically outwards along the rotation axis, and returning in the vicinity of the tan-
gent cylinder. Both of these components of ®ow are rather consistent in form, and
both appear important for the dynamo action obtained, as is discussed in x 4. The
magnetic  eld is somewhat more variable, but structures similar to those seen in  g-
ure 5 are very common. The zonal  eld, , is characterized by two oppositely signed
(and equatorially antisymmetric) patches in each hemisphere, located on and above
the inner core. The lines of force of the meridional  eld, sin , tend to form a
single dominant (symmetric) structure in the interior, albeit with a somewhat com-
plicated morphology on the inner core boundary; near to the surface (where the  eld
is weaker), a secondary region of reversed polarity is common. It is interesting to note
that such a morphology (with two poloidal polarities) was observed in the original
calculations of Glatzmaier & Roberts (1995 ), but not in their later models. The
precise reason for this di¬erence between the various models is unclear.

4. Dynamo mechanisms

The axisymmetric ®ow pattern described in x 3 proves robust, and is one of the
strongest characteristics of this type of solution. This part of the ®ow can be under-
stood in purely hydrodynamic terms. With the axisymmetric velocity separated into
toroidal ( ) and poloidal ( ) parts,

u = e + r ( e ) (4.1)
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Figure 5. Axisymmetric ¯elds in a meridional plane, for a solution with Ra = 45 000, q = 1,
E = 10 4 , = 0:05, M = 4. B gives the zonal magnetic ¯eld, Ar sin the meridional lines
of force, the temperature, v=(r sin ) the zonal angular velocity, and  r sin the meridional
streamfunction.

the non-magnetic momentum equation gives

=
1

+ ( 2)2 (4.2)
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vQ y

Figure 6. The three hydrodynamic axisymmetric variables , and , in a meridional plane, for
a typical equatorially symmetric, non-magnetic solution, showing the basic thermal wind state.
From calculations with = 30 000, = 1, = 10 4 , = 0 05, = 1.

= 2 (4.3)

where 2 = (r2 2), in terms of cylindrical radius, = sin .
For a highly supercritical system such as the present, strong non-axisymmetric

convection outside the tangent cylinder results in highly e¯ cient heat transport
there, so that this outer region becomes relatively well-mixed, with a comparatively
low mean temperature (close to that of the outer boundary), and a strong thermal
boundary layer at the inner core. In comparison, the geometry of the polar regions
(inside the tangent cylinder) hinders this development, and the thermal boundary
layer is weaker there, with a relatively strong radial temperature gradient remaining
in the bulk ®uid. This results in a characteristic temperature pro le such as that
shown in  gure 6 (for a calculation with equatorial symmetry imposed, and slightly
less strongly driven, but otherwise similar to those described before).

This gives a characteristic gradient , negative (in the Northern Hemisphere)
in the vicinity of the tangent cylinder. By equation (4.2), this must in the main be
balanced by a negative gradient . (Since the Ekman number is small, the
viscosity term is negligible to  rst order.) No-slip conditions impose = 0 at the
outer boundary, so we anticipate 0 in the interior. Since the inner core is free
to rotate, can be non-zero at the inner core boundary, and the solution takes
advantage of this option, with the inner core spinning up to a velocity close to that
of the adjacent ®uid via the viscous torque.

In equation (4.3), there are no  rst order terms capable of balancing in the
bulk ®uid, and so is relatively -independent in the interior. Near the boundaries,
however, large gradients occur, and viscosity cannot be neglected. Gradients are
strongest near the inner core boundary, where 2 is strongly negative (as can be
deduced from the strong local maximum). The ensuing positive gradient in
gives rise to the positive within the tangent cylinder. = 0 is required at the
outer boundary, and it is in accommodating this requirement|and hence requiring

2 0 (a local minimum) near the boundary where = 0|that the polar negative
in the toroidal ®ow is required.

The resultant picture|with negative (westward) ®ow near the polar axis at the
surface, positive (eastward) toroidal ®ow near the axis at depth, and with meridional
circulation outwards along the axis, returning along the tangent cylinder|is exactly
that evident in  gure 5, and is extremely robust, a similar pattern being obtained with
or without magnetic  elds, as will be seen. It is the viscous stress on the inner core,
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associated with the toroidal ®ow, which drives the strong inner core superrotation,
described in detail by Sarson & Jones (1999).

This characteristic toroidal velocity is also very important for the associated dy-
namo action. If the axisymmetric magnetic  eld is also written in toroidal ( ) and
poloidal ( ) parts,

B = e + r ( e ) (4.4)

then the axisymmetric induction equation gives

+ r ( e ) grad = 2 + r ( e ) grad + e (r E )

(4.5)

+
1r ( e ) grad( ) = 2 + e E (4.6)

where E is the axisymmetric part of (u B ) arising from non-axisymmetric u and
B . The second to last term in equation (4.5), allowing for the generation of toroidal
 eld from poloidal via di¬erential rotation (grad( )), is the well-known -e¬ect
(Roberts 1994). This term is responsible for the strong axisymmetric zonal  eld
evident in  gure 5.

The axisymmetric poloidal  eld must itself be generated by the non-axisymmetric
convection via the so-called -e¬ect, relying upon the quantity E in equation (4.6).
This term is necessary for dynamo action, since cannot be sustained by the purely
axisymmetric (linear) terms in this equation (Roberts 1994). These solutions do not
seem to have di¯ culty with this constraint, however; the strong three-dimensional
velocities arising in the vicinity of the tangent cylinder ( gure 4) generate a strong
axisymmetric poloidal  eld there ( gure 5). (In fact, axisymmetric poloidal  eld
is generated by non-axisymmetric convection throughout the outer core; it is typ-
ically strongest near the inner core, however, where both the toroidal  eld and
the convection|driven by the imposed heat ®ux at the inner core boundary|are
strongest.) It is clear, in any case, that the axisymmetric toroidal  eld is dominantly
produced by the di¬erential rotation, so that the dynamo is better approximated as
of type (cf. the `Busse{Zhang’ like solutions of Olson et al . (1999), which, they
argue, are essentially of 2 type; that is, the quantity E plays an essential role in
equation (4.5) for their solutions, while the di¬erential rotation does not.)

As noted above, the basic form of the axisymmetric velocity is extremely robust.
This can clearly be seen in  gure 7, where the di¬erential rotation and poloidal
streamfunction are shown for typical solutions obtained for B 6= 0 and for B = 0 (i.e.
for one normal dynamo solution, and for one solution where the magnetic  eld has
been switched o¬). The plots show the same characteristic form for both quantities,
di¬ering only in the typical magnitudes. Di¬erential rotation is stronger with no
magnetic  eld present; the magnetic  eld in a normal dynamo solution reduces this
quantity considerably. This can be seen in plots of the axisymmetric Lorentz force,
which consistently show a strongly negative azimuthal force opposing the dominant
zonal ®ow above the inner core. This is clearly consistent with the results reported
by Sarson & Jones (1999), that the principal e¬ect of the magnetic torque on the
inner core is to act as a `braking torque’, reducing the inner core rotation rate from
its non-magnetic value.
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B = 0 B = 0

B ¹  0 B ¹  0

Figure 7. Zonal angular velocity, ( sin ) (left), and meridional streamfunction, sin
(right), for typical solutions obtained with jB j 6= 0 (top) and with jB j = 0 (bottom). From
calculations with = 30 000, = 1, = 10 4 , = 0 05, = 1, with equatorial symmetry
imposed. The same scale is used in comparable plots.

The relative simplicity of this e¬ect o¬ers one obvious explanation of the equili-
bration of these dynamos. In the non-magnetic case, the  eld has been arti cially
removed. If we restore a small magnetic  eld and let it develop kinematically|i.e.
if we simply time-step the induction equation (2.2) with the non-magnetic velocity
held  xed, rather than time-stepping the full set of equations (2.1){(2.3) normally|
then we obtain strong exponential  eld growth; this velocity is supercritical in terms
of dynamo action. If we run the same experiment with the velocity from the equi-
librated dynamo case, very weakly exponential behaviour is found; the velocity is
marginal for dynamo action. This should be expected, of course. Any dynamically
self-consistent system in a more-or-less steady state (at its natural, equilibrated,
 eld-strength) must operate about criticality; otherwise the Lorentz force associated
with a growing  eld will act on the ®uid ®ow so as to inhibit continued growth. In
the present case, the relatively simple reduction in the zonal velocity e¬ected by the
magnetic  eld o¬ers a simple mechanism for understanding the equilibration. Since
it is this component of ®ow that creates toroidal  eld via the -e¬ect, the reduction
of this ®ow will in®uence dynamo action in a direct way. The e¬ect is akin to the
` -quenching’ used in some nonlinear mean- eld models, whereby this generation
term is reduced as the  eld strength increases. A similar mechanism was discussed
in some detail by Gilman (1983).
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While the simplicity of this e¬ect is appealing, and it clearly must contribute
signi cantly towards equilibration, it would be misleading to insist that this need be
the only mechanism present in these solutions. Although the non-axisymmetric ®ow
appears to be relatively little a¬ected by the  eld equilibration (convection remaining
of comparable magnitude and form in either state), extremely subtle changes are
often all that are required to change the stretching properties (essential for dynamo
action) of a three-dimensional ®ow, and this may also be occurring in the present.
Additionally,  gure 7 shows that, as well as weakening the di¬erential rotation, the
Lorentz force acts to strengthen the meridional circulation. While we think this
feature of the ®ow acts principally to a¬ect the time-behaviour of these solutions,
as discussed below, it may also in®uence the equilibration process. Nevertheless, the
simple picture outline above|of a thermal wind ®ow co-existing with strong non-
axisymmetric convection, generating the dominant toroidal magnetic  eld via the !-
e¬ect, and being moderated by the Lorentz force to equilibrate dynamo action|goes
a long way towards explaining the comparatively steady-state behaviour exhibited
by our model at times.

In the kinematic experiments described above, where the evolution of magnetic
 eld was investigated with the velocity held  xed, the exponential behaviour obtained
was monotonic; solutions either grew or decayed, but did not change polarity. And
while the above illustrations made use of calculations with equatorial symmetry
imposed, and with M = 1, neither of these factors limit our conclusions; solu-
tions in more general cases remain dominantly equatorially symmetric through-
out most of their time-evolution, and the kinematic behaviour of typical states
is similar. Equilibrated solutions of this type are clearly a good model for the
generation of a predominantly steady dipole  eld, but not for a  eld subject to
reversals.

One component of these solutions may have a very strong e¬ect on the time-
dependence, however: the meridional circulation. As shown above, a characteristic
form of this type of ®ow is present in our solutions, both as a part of the basic
thermal wind mechanism, and due to the action of the axisymmetric Lorentz force.
Continual ®uctuations in the strength of this component of ®ow occur, from ®uc-
tuations in both thermal and magnetic forces. The e¬ect of meridional circulation
on kinematic ! dynamo action has been well understood since the de nitive study
of Roberts (1972); when present in the appropriate magnitude and sense, it acts
to enhance dynamo action, and to make the favoured mode stationary, where !
dynamos tend, in its absence, to favour oscillatory solutions. A decrease in the mag-
nitude of meridional circulation might then cause a solution maintaining an essen-
tially steady  eld to ®uctuate, leading to parity reversal if the velocity remained
altered in this way for an appropriate period of time. It might also be accompa-
nied by a decrease in  eld strength, a characteristic suggested for many geomagnetic
reversals.

The potential of such a mechanism to explain occasionally reversing behaviour
was noted by Gubbins & Sarson (1994), after three-dimensional kinematic dynamo
calculations con rmed the behaviour previously observed in ! systems. Sarson &
Jones (1999), analysing a reversal of an M = 1 (2 1

2
-dimensional) solution of GR

type, observed the  eld transition to be preceded by an obvious ®uctuation in the
meridional circulation, and suggested this as an instance where the reversal mecha-
nism appears to have been applicable in a dynamical context. Kinematic calculations,
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- 0.3177 0.31770

B 0.2

Figure 8. B on the surface of the dynamo region, for the solution with Ra = 45 000, q = 1,
E = 10 4 , = 0:05, M = 4, detailed in x3. The colour shows the radial component of ¯eld,
arrows show the tangential.

investigating the dynamo action of GR ®ows with normal and reduced meridional
circulations, and  nding agreement with the kinematic behaviour outlined above,
backed up this claim. Additional reversals of this type of solution have been studied
for M = 2 and M = 4. The applicability of the kinematic reversal mechanism to
these solutions, and to the geodynamo, is discussed in some detail in x 6. Regardless
of its applicability in this speci c instance, however, the general mechanism clearly
remains feasible.

5. Geomagnetic diagnostics

Despite the caveats discussed in x 1, on the prematurity of any detailed comparison
between numerical models and the geodynamo, it remains of some interest to compare
some of the appropriate features.

Most simply, we can plot the external expression of our dynamo process, the
magnetic  eld on the outer boundary, for comparison with historical  eld models
downward-continued to the Earth’s core{mantle boundary (CMB); this is done in
 gure 8, for the snapshot detailed in x 3. There are some features that bear compar-
ison with the geodynamo. The  eld is typically dominated by the equatorially anti-
symmetric (dipole) symmetry, although deviations from pure symmetry are common
(features are typically stronger in one hemisphere than in the other). The main ®ux
lobes of the dipole symmetry  eld are o¬set from the poles, typically at latitudes
of 60{70 , often with a reverse polarity patch at the pole itself; such features have
been noted for the historical  eld (Gubbins & Bloxham 1987). The magnitude of the
 eld in  gure 8 is given in non-dimensional units. Rescaling appropriately for the
Earth, using B 2:2 mT as described in x 3, gives peak surface values of the order of
0:7 mT, a value comparable with that of the present-day  eld. While the dominant
wavelength of our solution, m = 2, also agrees with historical observations, this fac-
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107.90- 107.9

U 958.6

Figure 9. U just below the surface of the dynamo region (at r = 1:45), for the solution with
Ra = 45 000, q = 1, E = 10 4 , = 0:05, M = 4. The colour shows the radial component of
° ow, arrows show the tangential. The non-dimensional units of velocity give the local Rm .

tor is somewhat constrained by the base wavenumber used in this calculation, and
it would be unwise to make too much of this fact.

Beyond the high-latitude dipole-symmetry  eld lobes, strong ®ux lobes also appear
in the equatorial regions. These features show a weaker preference for pure equatorial
symmetry, are typically smaller scale, and vary rather chaotically with time. Com-
pared with similar features in the historical  eld, these lobes are often rather strong;
in the snapshot shown, for example, the maximum surface  eld occurs in such a lobe.

The secular variation of this model has not been extensively studied, but surface
features appear to drift both eastwards and westwards, with neither direction being
obviously preferred. The surface  eld is also prone to changes in polarity, which
are not re®ected in the  eld deep within the core (and, hence, are not apparent
in plots such as  gure 2). The deep internal  eld permeates the inner core, and so
cannot ®uctuate too violently, being constrained to change by di¬usion rather than
advection; the inner core acts as a stabilizing in®uence, as made clear by Hollerbach
& Jones (1993, 1995). The near-surface  eld is not so constrained, and experiences
frequent ®uctuations, which might correspond to geomagnetic excursions. While this
is at odds with the traditional view of a predominantly stable  eld subject to only
occasional reversals, it is not inconsistent with the picture proposed on the basis of
recent palaeomagnetic data by Gubbins (1999); in this scenario, the  eld is indeed
subject to frequent excursions, only some of which are re®ected in the inner core
 eld.

For our dynamo model, we are also able to plot the near-surface velocity  eld, a
quantity that can be inferred from magnetic  eld observations, albeit non-uniquely
and subject to various assumptions (see, for example, Bloxham & Jackson 1991). It is
of interest to correlate the magnetic  eld with the velocity, and the latter is plotted
in  gure 9. The velocity tends more strongly towards equatorial symmetry than
the magnetic  eld. A tendency for the magnetic ®ux to be concentrated where the
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surface ®uid downwells (evinced by convergent arrows and negative radial velocities)
is apparent. This phenomenon is to be expected in ®uids at high Rm (where di¬usion
is weak and the  eld tends to be advected with the ®ow (Roberts 1994)); it has been
anticipated in interpretations of the observed geomagnetic  eld (Gubbins 1993), and
observed in numerical dynamo calculations, both kinematic (Hutcheson & Gubbins
1994) and dynamic (Kageyama & Sato 1997; Kitauchi & Kida 1998; Sakuraba &
Kono 1999; Olson et al . 1999).

The axisymmetric meridional circulation associated with the thermal wind mech-
anism is also evident in the polar regions of  gure 9. This feature of the ®ow may
contribute to the o¬set of the dominant ®ux lobes from the pole, by a high Rm mech-
anism similar to that outlined above. It should be noted, however, that this type of
®ow is not strong in most core ®ow inversions, and it should be borne in mind that
this feature of our solution is rather dependent upon viscous e¬ects, which will be
weaker in the Earth than in our model.

The spectrum of mean surface magnetic energy is shown, in  gure 10, for the
same snapshot; the equivalent spectrum for the observed 1980  eld is included for
comparison. Here we use dimensionalized values, calculated as before, and the spectra
are calculated as

Rl = (l + 1)

lX

m = 0

(gm
l )2 + (hm

l )2; (5.1)

where gm
l , hm

l are Gauss coe¯ cients in the standard potential  eld description appli-
cable outside the dynamo region, B = grad V ,

V = a
X

l

a

r

l + 1 lX

m= 0

(gm
l cosm + hm

l sinm )P
m

l (cos ): (5.2)

Here, a is the Earth’s surface radius, and the P
m

l are Schmidt normalized Legendre
functions. The plot has been truncated at degree l = 20, although our model goes
out to l = 48. The general agreement between the two spectra is reassuring, although
deviations clearly exist. Notably, our dipole (l = 1) component is somewhat too weak
for the 1980  eld (although it has recently been suggested that the historical  eld
is abnormally strong (Juarez et al . 1998)). Conversely, we have too much magnetic
energy in degrees 2 < l < 8; this is perhaps not surprising, given the strong  eld
structures apparent in  gure 8.

In addition to these instantaneous measures of a typical snapshot of our  eld, we
can attempt to compare aspects of our solution during a reversal transition. Several
reversal sequences have been studied in detail, including one obtained for M = 4;
the  rst reversal apparent in the time-sequence is shown in  gure 2. As noted above,
the surface  eld of this solution is rather variable with time, and this remains so
during this transition, with many changes of polarity (rather than a single event)
being observed. This is apparent in sequences of virtual geomagnetic poles (VGPs)
throughout the transition; most sites show several equatorial crossings. This is of
course highly site-dependent, as is to be expected given the relatively complex  eld
morphology. Having plotted comparable VGP sequences for many other sites, and
for several reversals, no particular trend in the VGP paths has been noted (although
no real statistical analysis has been performed). This is not surprising, however,
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Figure 10. Surface ¯eld spectrum Rl , for the solution with Ra = 45 000, q = 1, E = 10 4 ,
= 0:05, M = 4. The observed spectrum of the 1980 ¯eld is shown for comparison.

given the spherical symmetry of our basic model; any bias in VGP statistics in the
palaeomagnetic record must be the result of inhomogeneities, probably at the CMB,
as suggested by Laj et al . (1991). Local  eld intensities at individual sites during
the transition also prove to be highly site-dependent, and display no obvious trends
noted in the palaeomagnetic literature; local  eld strengths are not systematically
decreased during the transition, for example.

6. Discussion

At the present time, detailed comparisons of numerical models with the geomag-
netic record remain di¯ cult. Numerical simulations of the dynamo, constrained to
model the time-scales of the basic core MHD processes, arguably fail to satisfactorily
model phenomena on both shorter and longer time-scales. All current dynamo models
assume either geophysically inappropriate values of the ®uid inertia or inappropri-
ate ratios of inertia to viscosity, and either option will make much of the secular
variation behaviour arising in these models inapplicable. (Although some authors
argue that their output can be successfully scaled (Kuang & Bloxham 1998).) And,
as discussed in x 1, time-series of su¯ cient length for comparison with the long-term
palaeomagnetic record simply cannot currently be achieved.

Given the various strong numerical constraints, it is unclear whether either of
these problems will be entirely overcome in direct numerical simulations, with any
extrapolated future increase in computer power. A series of di¬erent models, inves-
tigating the di¬erent phenomena in di¬erent ways, may prove more fruitful. For
secular variation behaviour, for example, a high-resolution solution, run for com-
paratively short total times, and assuming a mean  eld consistent with the longer
time-scale models, may be worthwhile. For statistical studies of the long-term rever-
sal behaviour, a parametrized model, incorporating the type of behaviour eluci-
dated from direct MHD simulations into a greatly simpli ed system, may prove
necessary.
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In the meantime, however, direct simulations can still help us to understand the
reversal (and other) behaviour of MHD dynamo systems in general; potentially use-
ful comparisons with the Earth may still be made, although we should clearly not
expect detailed agreement. The present work has focused on solutions of one simple
numerical model, and tried to elucidate the important mechanisms occurring. These
particular simulations are dominated by a thermal wind ®ow, and the di¬erential
rotation this imposes is responsible for the strong zonal magnetic  elds that domi-
nate the magnetic  eld. The system therefore broadly acts like an !-type dynamo
(cf. 2 type). The equilibration of dynamo action in this system also appears rather
simple, with an `!-quenching’ e¬ect going a long way towards explaining this. In
terms of the time-dependence of these solutions, the kinematic reversal mechanism
noted by Sarson & Jones (1999) has been re-emphasized, whereby ®uctuations in
meridional circulation change the nature of the  eld preferentially excited, and lead
to transitional episodes. Although the applicability of this kinematic mechanism to
speci c reversals of the dynamical system may be debated (and is further discussed
below), the plausibility of the mechanism remains clear.

Despite being deduced from a model far from the appropriate parameter regime,
many of these mechanisms may remain valid for the geodynamo. The strong zonal
®ow found in the thermal wind state might be expected to be a general feature of
strongly supercritical convection in a spherical shell geometry, although the speci c
form determined here clearly remains viscously a¬ected. Thus, di¬erential rotation
appears likely to play a signi cant role in the dynamo action of the Earth. The rel-
atively simple equilibrated states found here may prove elusive in the geodynamo,
however; in the absence of the balancing control of viscosity, much greater ®uctua-
tions in ®ow might be expected to occur with variations in the Lorentz force. The
presence of meridional circulation in the geodynamo may also be rather di¬erent
from that in our model. The thermal wind mechanism relies upon viscosity to drive
this component of ®ow; in the geodynamo, the Lorentz force may be the dominant
source. Greater ®uctuations in behaviour might then be expected, if the meridional
circulation is strongly dependent upon the magnetic  eld, and vice versa. In any
event, relatively small amounts of this type of ®ow|from whatever source|can
have a profound e¬ect on dynamo action, and so the importance of this quantity for
the time behaviour of the geodynamo remains great.

It should be noted here that our thermal wind ®ow|which underpins many
of the dynamo mechanisms outlined|was calculated with an inner core free to
rotate, and subject only to viscous and electromagnetic torques. The relevance of
this case to the geodynamo is arguable. The equipotential gravity  eld arising from
an inhomogeneous mantle will deform a stationary inner core from rotational sym-
metry, and strong gravitational torques will then act to restore it, if it is rotated
from its equilibrium position (Bu¬ett 1996). In such a model, the inner core is
e¬ectively locked in synchronous rotation with the mantle. Depending upon the
inner core viscosity, however, it may be able to deform as it rotates, maintain-
ing a surface topography in equilibrium with the mantle, yet still allowing net
rotation of the order required (Bu¬ett 1997). While such concerns clearly have a
bearing on our model, and must be the subject of future study, they should not
qualitatively a¬ect the basic mechanisms. The locking of the inner core will not
prevent strong zonal ®ows in the outer core ®uid, and the greater shear necessary
above the inner core, if the latter were indeed unable to co-rotate, might enhance
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both the !-e¬ect and the generation of meridional circulation on which our model
relies.

The meridional circulation reversal mechanism invoked by Sarson & Jones (1999)
is not wholly original. The role of meridional circulation in changing the time-
dependence of dynamo action|and the possibility of this explaining geomagnetic
reversals|was noted rather early in the history of quantitative dynamo modelling;
the ideas are present in Braginsky (1964a; b), albeit partly by analogy with Cartesian
models. The generality of the e¬ect of meridional circulation on spherical ! sys-
tems was  rmly established by Roberts (1972), and the ensuing kinematic reversal
mechanism is explicitly outlined in Parker (1979, p. 707), as follows.

Suppose, for instance, that the distribution of shear and cyclones in the
core of Earth is such that they cannot generate a stationary dipole: : :but
there is more or less coincidentally a meridional ®ow of such a nature that
the cyclones and shear are coerced into generating a stationary dipole.
Then suppose that the meridional ®ow is interrupted or altered for a brief
time. During that period the dynamo may generate an oscillatory  eld
so that, when the meridional circulation is restored, the new stationary
 eld may be reversed relative to the earlier stationary  eld. It is one
more of the many theoretical possibilities for an occasional reversal of
the geomagnetic  eld.

The healthy scepticism inherent in the  nal sentence is worth noting, particularly
coming from one of the authors of an alternative kinematic mechanism (Parker 1969;
Levy 1972a{c), based upon the migration of concentrations of shear or cyclone com-
ponents of the velocity. While the fact that the meridional circulation mechanism
appears to occur naturally in our dynamical system arguably makes it more than
a theoretical possibility|and while the meridional circulation associated with the
thermal wind ®ow may be more than `coincidental’|it certainly remains only one
of many possibilities. In addition to the alternative mechanism of Parker and Levy,
®uctuations in the vigour of convection, leading to the kinematic excitation of sec-
ondary, symmetry-breaking modes, have also been posited as a kinematic reversal
mechanism (Parker 1979). This latter e¬ect may also be of relevance in our dynamical
model, where equatorially symmetric  elds are often signi cant during reversals, and
where the vigour of convection (dependent upon Ra) clearly does in®uence reversal
frequency. (By contrast, there is little evidence for migration of convective features
in our model, as would support a Parker{Levy type model.)

It is perhaps unwise to lay too much stress on any kinematic mechanism in explain-
ing the behaviour of such a dynamically ®uctuating system. In our calculations,
we track the time-evolution of several chaotically varying  elds, and direct cause
and e¬ect are often di¯ cult to isolate. In the reversal studied by Sarson & Jones
(1999), for example, the background  eld intensity had already decreased somewhat
before the proposed meridional circulation `trigger’ occurred. In light of the relation-
ship between  eld strength and meridional circulation apparent in  gure 7 (whereby
strong  elds enhance meridional circulation, presumably leading to greater  eld sta-
bility), the two e¬ects may be rather intricately linked. This e¬ect might also back up
suggested correlations between  eld strengths and reversals (e.g Cox 1968), although,
as noted in x 5, there is no real evidence for this in our calculations.
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Additional transitions have been studied since Sarson & Jones (1999), for cases
with M = 2 and M = 4. Although the later sequences certainly exhibit ®uctuations
in meridional circulation during transitions, the general behaviour is more chaotic|
with several strong ®uctuations in the outer core  eld occurring before the reversed
polarity becomes  rmly established in the inner core|and it is di¯ cult to isolate
any single critical events. It may be that these later reversals, obtained at Ra =
45 000, are simply too supercritical to allow any simple analysis. Further analysis,
and analysis of additional transitions (ideally less chaotic events), is clearly required.
It might be noted, however, that this type of highly chaotic system  ts well with
the picture suggested by Gubbins (1999), of an outer core system prone to frequent
®uctuations, which only occasionally succeed in reversing  eld throughout the core.
(It should be re-emphasized here that the  eld we have been principally concerned
with|in terms of both steady maintenance and reversals|is the main dynamo  eld,
generated deep within the core, and subject to the stabilizing in®uence of the inner
core observed by Hollerbach & Jones (1993, 1995). As noted in x 5, this  eld is not
always re®ected in the more variable surface  eld.)

In any event, the potential importance of meridional circulation to dynamo action
is clear, and it remains one available tool in understanding reversal behaviour. It
may contribute, for example, to the results of Glatzmaier et al . (1999), who investi-
gated dynamo systems with a variety of imposed inhomogeneous CMB heat ®uxes.
They found that systems with greater polar heat ®uxes, which might be expected
to enhance the meridional circulation evident in our thermal wind ®ow, tended to
be of rather stable polarity; conversely, systems with reduced polar heat ®uxes (and,
presumably, weakened polar circulation) were abnormally prone to reversal.

In a  eld that remains relatively little understood, much freedom for speculation
exists. New observations may change our picture of the long-term behaviour of the
geodynamo; e.g. the recent studies proposing signi cant changes in our understand-
ing of the recent palaeomagnetic  eld (of the order of 1{5 Myr), in terms both of
its  eld intensity (Juarez et al . 1998), and of the frequency of reversal/excursional
events (Gubbins 1999). One could construct a theory linking the two phenomena:
an abnormally strongly driven episode of convection might be responsible both for
stronger mean intensities and more chaotic time-behaviour. Such speculation remains
fruitless, however, until we have better constraints both on the behaviour of MHD
dynamos, and on the past behaviour of the geomagnetic  eld; further work in both
directions is required before we can claim to have a quantitative understanding of
the Earth’s reversal behaviour.

I thank Chris Jones and Keke Zhang for many helpful discussions over an extended period, and
Steve Gibbons for the preparation of ¯gure 1. This work was supported by the UK PPARC
grant GR/K06495.
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